1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
//! Prolog terms.
//!
//! In prolog, all data is a term. Terms are things like atoms or
//! numbers, or compound structures like functors, lists,
//! dictionaries, or tuples. Even prolog code itself is a term.
//!
//! Interaction with SWI-Prolog terms happens through so-called term
//! references. These term references live on the prolog stack, and
//! they contain a term.
//!
//! If we have a term reference, we can get data from it, and put data
//! into it. Furthermore, we can unify terms with eachother, or we can
//! unify a term with user data.
//!
//! As term references live on a stack, they aren't valid
//! forever. They're only valid as long as the frame in which they are
//! created is still around.
//!
//! swipl-rs has been written to make working with terms easy. First,
//! through lifetimes, it is always ensured that you can only work
//! with terms that are still in scope. As soon as a frame goes out of
//! context, trying to use a term that was created by that frame will
//! result in a compile error.
//!
//! Second, getting data into and out of terms can all be done through
//! a unified interface on `Term`. This interface is extendable with
//! your own types that you wish to get into or out of prolog.
//!
//! Third, swipl-rs supports construction of complex terms through the
//! [term!](crate::prelude::term!) macro. Consider using this macro when
//! you have to produce deeply nested types.
use super::atom::*;
use super::context::*;
use super::engine::*;
use super::fli::*;
use super::record::*;
use super::result::*;
use std::cmp::{Ordering, PartialOrd};
use std::convert::TryInto;
use std::fmt;
use std::fmt::Debug;
use std::os::raw::c_char;

use swipl_macros::term;

#[cfg(feature = "serde")]
pub mod de;
#[cfg(feature = "serde")]
pub mod ser;

#[cfg(feature = "serde")]
pub use de::Deserializer;

#[cfg(feature = "serde")]
pub use ser::{Serializer, SerializerConfiguration};

/// A term reference.
#[derive(Clone)]
pub struct Term<'a> {
    term: term_t,
    origin: TermOrigin<'a>,
}

impl<'a> Debug for Term<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "Term({:?})", self.term)
    }
}

/// Various types a term can be.
#[derive(Debug, PartialEq)]
pub enum TermType {
    Variable,
    Atom,
    Nil,
    Blob,
    String,
    Integer,
    Rational,
    Float,
    CompoundTerm,
    ListPair,
    Dict,
    Unknown,
}

impl<'a> Term<'a> {
    pub(crate) unsafe fn new(term: term_t, origin: TermOrigin<'a>) -> Self {
        Term { term, origin }
    }

    /// Return the underying `term_t` from the SWI-Prolog fli.
    pub fn term_ptr(&self) -> term_t {
        self.term
    }

    pub fn origin_engine_ptr(&self) -> PL_engine_t {
        self.origin.origin_engine_ptr()
    }

    /// Returns the type of the value in this term.
    pub fn term_type(&self) -> TermType {
        self.assert_term_handling_possible();
        match unsafe { PL_term_type(self.term) as u32 } {
            PL_VARIABLE => TermType::Variable,
            PL_ATOM => TermType::Atom,
            PL_INTEGER => TermType::Integer,
            PL_RATIONAL => TermType::Rational,
            PL_FLOAT => TermType::Float,
            PL_STRING => TermType::String,
            PL_TERM => TermType::CompoundTerm,
            PL_NIL => TermType::Nil,
            PL_BLOB => TermType::Blob,
            PL_LIST_PAIR => TermType::ListPair,
            PL_DICT => TermType::Dict,
            _ => TermType::Unknown,
        }
    }

    /// Returns true if this term reference holds a variable.
    pub fn is_var(&self) -> bool {
        self.assert_term_handling_possible();
        unsafe { PL_is_variable(self.term) != 0 }
    }

    /// Returns true if this term reference holds an atom.
    pub fn is_atom(&self) -> bool {
        self.assert_term_handling_possible();
        unsafe { PL_is_atom(self.term) != 0 }
    }

    /// Returns true if this term reference holds a string.
    pub fn is_string(&self) -> bool {
        self.assert_term_handling_possible();
        unsafe { PL_is_string(self.term) != 0 }
    }

    /// Returns true if this term reference holds an integer.
    pub fn is_integer(&self) -> bool {
        self.assert_term_handling_possible();
        unsafe { PL_is_integer(self.term) != 0 }
    }

    /// Reset terms created after this term, including this term itself.
    ///
    /// # Safety
    /// Only safe to call when you're sure these terms aren't used afterwards.
    pub unsafe fn reset(&self) {
        self.assert_term_handling_possible();
        PL_reset_term_refs(self.term);
    }

    /// Assert that the engine where this term was originally created is the active engine on this thread.
    pub fn assert_term_handling_possible(&self) {
        if !self.origin.is_engine_active() {
            panic!("term is not part of the active engine");
        }
    }

    /// Unify this term with some unifiable data.
    ///
    /// [Unifiable] is a trait that has been implemented for many data
    /// types.
    ///
    /// This will return an `Err(PrologError::Exception)` if during
    /// unification, an error was raised somewhere in the SWI-Prolog
    /// fli. If unification is not possible, an
    /// `Err(PrologError::Failure)` will be returned. Otherwise the
    /// result is an `Ok(())`.
    pub fn unify<U: Unifiable>(&self, unifiable: U) -> PrologResult<()> {
        let result = unifiable.unify(self);

        // unify functions may throw an exception, either directly or
        // through some inner function. It's too much hassle to have
        // each function check for themselves and return the
        // appropriate thing, so we just do it all here.
        if unsafe { pl_default_exception() != 0 } {
            Err(PrologError::Exception)
        } else if result {
            Ok(())
        } else {
            Err(PrologError::Failure)
        }
    }

    /// Unify the nth arg of the term with some unifiable data. This
    /// assumes that the given term contains a functor.
    ///
    /// The argument position is 1-indexed. Therefore, the first
    /// argument is argument 1.
    ///
    /// This will return an `Err(PrologError::Exception)` if during
    /// unification, an error was raised somewhere in the SWI-Prolog
    /// fli. If unification is not possible (which may be because this
    /// term does not hold a functor), an `Err(PrologError::Failure)`
    /// will be returned. Otherwise the result is an `Ok(())`.
    pub fn unify_arg<U: Unifiable>(&self, index: usize, unifiable: U) -> PrologResult<()> {
        if index == 0 {
            panic!("unify_arg was given index 0, but index starts at 1");
        }

        self.assert_term_handling_possible();

        let arg_ref = unsafe { PL_new_term_ref() };

        let result = unsafe { PL_get_arg(index.try_into().unwrap(), self.term, arg_ref) };
        if unsafe { pl_default_exception() != 0 } {
            return Err(PrologError::Exception);
        }

        let arg = unsafe { Term::new(arg_ref, self.origin.clone()) };
        let mut result2 = Err(PrologError::Failure);
        if result != 0 {
            result2 = arg.unify(unifiable);
        }

        unsafe { PL_reset_term_refs(arg_ref) };

        result2
    }

    /// Retrieve data from the term reference.
    ///
    /// Any data type for which [TermGetable] has been implemented may
    /// be retrieved in this way.
    ///
    /// This will return an `Err(PrologError::Exception)` if during
    /// getting, an error was raised somewhere in the SWI-Prolog
    /// fli. If getting is not possible (because the term holds a
    /// variable, or an incompatible data type), an
    /// `Err(PrologError::Failure)` will be returned. Otherwise the
    /// result is an `Ok(data)`, with the requested data in it.
    pub fn get<G: TermGetable>(&self) -> PrologResult<G> {
        let opt = G::get(self);

        // get functions may throw an exception, either directly or
        // through some inner function. It's too much hassle to have
        // each function check for themselves and return the
        // appropriate thing, so we just do it all here.
        if unsafe { pl_default_exception() != 0 } {
            Err(PrologError::Exception)
        } else if opt.is_none() {
            Err(PrologError::Failure)
        } else {
            Ok(opt.unwrap())
        }
    }

    /// Retrieve data from the term reference, or raise exception if
    /// this is impossible.
    ///
    /// Any data type for which [TermGetable] has been implemented may
    /// be retrieved in this way.
    ///
    /// In addition to the situations where `get()` would raise an
    /// exception, this will raise an `error(instantiation_error, _)`
    /// when called on an unbound term, and `error(type_error(<type
    /// name>, <term>), _)` when retrieving the value from the term
    /// was not possible, which is always assumed to be due to a type
    /// incompatibility.
    ///
    /// Therefore, the only way this function will error is with an
    /// exception. It will never return a failure.
    pub fn get_ex<G: TermGetable>(&self) -> PrologResult<G> {
        if self.is_var() {
            let context = unsafe { unmanaged_engine_context() };
            let reset_term = context.new_term_ref();
            let exception_term = term! {context: error(instantiation_error, _)};
            let result = exception_term.and_then(|t| context.raise_exception(&t));
            unsafe { reset_term.reset() };

            return result;
        }
        let opt = G::get(self);

        // get functions may throw an exception, either directly or
        // through some inner function. It's too much hassle to have
        // each function check for themselves and return the
        // appropriate thing, so we just do it all here.
        if unsafe { pl_default_exception() != 0 } {
            Err(PrologError::Exception)
        } else if opt.is_none() {
            let context = unsafe { unmanaged_engine_context() };
            let reset_term = context.new_term_ref();
            let type_name = Atomable::from(G::name());
            let exception_term = term! {context: error(type_error(#type_name, #self), _)};
            let result = exception_term.and_then(|t| context.raise_exception(&t));
            unsafe { reset_term.reset() };

            result
        } else {
            Ok(opt.unwrap())
        }
    }

    /// Retrieve data from the nth position of the given term. This
    /// assumes that the given term contains a functor.
    ///
    /// The argument position is 1-indexed. Therefore, the first
    /// argument is argument 1.
    ///
    /// This will return an `Err(PrologError::Exception)` if during
    /// getting, an error was raised somewhere in the SWI-Prolog
    /// fli. If getting is not possible (because the term holds a
    /// variable, or an incompatible data type), an
    /// `Err(PrologError::Failure)` will be returned. Otherwise the
    /// result is an `Ok(data)`, with the requested data in it.
    pub fn get_arg<G: TermGetable>(&self, index: usize) -> PrologResult<G> {
        if index == 0 {
            panic!("unify_arg was given index 0, but index starts at 1");
        }

        self.assert_term_handling_possible();

        let arg_ref = unsafe { PL_new_term_ref() };

        let result = unsafe { PL_get_arg(index.try_into().unwrap(), self.term, arg_ref) };
        if unsafe { pl_default_exception() != 0 } {
            return Err(PrologError::Exception);
        }

        let arg = unsafe { Term::new(arg_ref, self.origin.clone()) };
        let mut result2 = Err(PrologError::Failure);
        if result != 0 {
            result2 = arg.get();
        }

        unsafe { PL_reset_term_refs(arg_ref) };

        result2
    }

    /// Retrieve data from the nth position of the given term. This
    /// assumes that the given term contains a functor.
    ///
    /// The argument position is 1-indexed. Therefore, the first
    /// argument is argument 1.
    ///
    /// This will return an `Err(PrologError::Exception)` if during
    /// getting, an error was raised somewhere in the SWI-Prolog fli,
    /// or if the underlying type was not the expected type, or if the
    /// term was not a compound or had the wrong arity.  Otherwise the
    /// result is an `Ok(data)`, with the requested data in it.
    pub fn get_arg_ex<G: TermGetable>(&self, index: usize) -> PrologResult<G> {
        if index == 0 {
            panic!("unify_arg was given index 0, but index starts at 1");
        }

        self.assert_term_handling_possible();

        let arg_ref = unsafe { PL_new_term_ref() };

        let result = unsafe { PL_get_arg(index.try_into().unwrap(), self.term, arg_ref) };
        if unsafe { pl_default_exception() != 0 } {
            return Err(PrologError::Exception);
        }

        let arg = unsafe { Term::new(arg_ref, self.origin.clone()) };
        let result2 = if result != 0 {
            arg.get_ex()
        } else {
            let context = unsafe { unmanaged_engine_context() };
            let exception_term = term! {context: error(arity_error, _)};
            exception_term.and_then(|t| context.raise_exception(&t))
        };

        unsafe { PL_reset_term_refs(arg_ref) };

        result2
    }

    /// Retrieve a &str from this term, and call the given function with it.
    ///
    /// This allows you to extract a string from a prolog string with
    /// as few copies as possible.
    pub fn get_str<R, F>(&self, func: F) -> PrologResult<R>
    where
        F: Fn(Option<&str>) -> R,
    {
        self.assert_term_handling_possible();
        let mut ptr = std::ptr::null_mut();
        let mut len = 0;
        let result = unsafe {
            PL_get_nchars(
                self.term,
                &mut len,
                &mut ptr,
                CVT_STRING | REP_UTF8 | BUF_DISCARDABLE,
            )
        };

        if unsafe { pl_default_exception() != 0 } {
            return Err(PrologError::Exception);
        }

        let arg = if result == 0 {
            None
        } else {
            let swipl_string_ref = unsafe { std::slice::from_raw_parts(ptr as *const u8, len) };

            let swipl_string = std::str::from_utf8(swipl_string_ref).unwrap();

            Some(swipl_string)
        };

        Ok(func(arg))
    }

    /// Retrieve an atom from this term, and call the given function with a borrow to it.
    ///
    /// We skip reference-counting for this atom which may be slightly
    /// faster in some scenarios.
    pub fn get_atom<R, F>(&self, func: F) -> PrologResult<R>
    where
        F: Fn(Option<&Atom>) -> R,
    {
        self.assert_term_handling_possible();
        unsafe { get_atom(self, func) }
    }

    /// Retrieve an atom from this term, and call the given function with a borrow to it.
    ///
    /// We skip reference-counting for this atom which may be slightly
    /// faster in some scenarios.
    pub fn get_atom_name<R, F>(&self, func: F) -> PrologResult<R>
    where
        F: Fn(Option<&str>) -> R,
    {
        self.assert_term_handling_possible();
        let mut ptr = std::ptr::null_mut();
        let mut len = 0;
        let result = unsafe {
            PL_get_nchars(
                self.term,
                &mut len,
                &mut ptr,
                CVT_ATOM | REP_UTF8 | BUF_DISCARDABLE,
            )
        };

        if unsafe { pl_default_exception() != 0 } {
            return Err(PrologError::Exception);
        }

        let arg = if result == 0 {
            None
        } else {
            let swipl_string_ref = unsafe { std::slice::from_raw_parts(ptr as *const u8, len) };

            let swipl_string = std::str::from_utf8(swipl_string_ref).unwrap();

            Some(swipl_string)
        };

        Ok(func(arg))
    }

    /// Put data into the term reference using a borrow.
    ///
    /// Any data type for which [TermPutable] has been implemented may
    /// be put into a term ref in this way.
    ///
    /// This is a nonlogical operation. The term reference will
    /// replace its content in a way that does not play nicely with
    /// backtracking.
    ///
    /// This will return an `Err(PrologException)` if during putting,
    /// an error was raised somewhere in the SWI-Prolog
    /// fli. Otherwise, the result is `Ok(())`.
    pub fn put<T: TermPutable + ?Sized>(&self, val: &T) -> NonFailingPrologResult<()> {
        val.put(self);

        if unsafe { pl_default_exception() != 0 } {
            Err(PrologException)
        } else {
            Ok(())
        }
    }

    /// Put data into the term reference using a copyable value.
    ///
    /// Any data type for which [TermPutable] has been implemented may
    /// be put into a term ref in this way.
    ///
    /// This is a nonlogical operation. The term reference will
    /// replace its content in a way that does not play nicely with
    /// backtracking.
    ///
    /// This will return an `Err(PrologException)` if during putting,
    /// an error was raised somewhere in the SWI-Prolog
    /// fli. Otherwise, the result is `Ok(())`.
    pub fn put_val<T: TermPutable>(&self, val: T) -> NonFailingPrologResult<()> {
        self.put(&val)
    }

    /// Return a record of the term.
    pub fn record(&self) -> Record {
        Record::from_term(self)
    }
}

impl<'a> PartialEq for Term<'a> {
    fn eq(&self, other: &Term) -> bool {
        self.assert_term_handling_possible();
        if self.origin.origin_engine_ptr() != other.origin.origin_engine_ptr() {
            panic!("terms being compard are not part of the same engine");
        }

        let result = unsafe { PL_compare(self.term_ptr(), other.term_ptr()) };

        result == 0
    }
}
impl<'a> PartialOrd for Term<'a> {
    fn partial_cmp(&self, other: &Term) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<'a> Ord for Term<'a> {
    fn cmp(&self, other: &Term) -> Ordering {
        self.assert_term_handling_possible();
        if self.origin.origin_engine_ptr() != other.origin.origin_engine_ptr() {
            panic!("terms being compard are not part of the same engine");
        }

        let result = unsafe { PL_compare(self.term_ptr(), other.term_ptr()) };

        result.cmp(&0)
    }
}

impl<'a> Eq for Term<'a> {}

#[derive(Clone)]
pub(crate) struct TermOrigin<'a> {
    engine: PL_engine_t,
    _lifetime: std::marker::PhantomData<&'a ()>,
}

impl<'a> TermOrigin<'a> {
    pub unsafe fn new(engine: PL_engine_t) -> Self {
        Self {
            engine,
            _lifetime: Default::default(),
        }
    }
}

unsafe impl<'a> Send for TermOrigin<'a> {}
unsafe impl<'a> Sync for TermOrigin<'a> {}

impl<'a> TermOrigin<'a> {
    pub fn is_engine_active(&self) -> bool {
        is_engine_active(self.engine)
    }

    pub fn origin_engine_ptr(&self) -> PL_engine_t {
        self.engine
    }
}

/// Trait for term unification.
///
/// # Safety
/// This is marked unsafe because in order to do term unification, we
/// must be sure that
/// - the term is created on the engine which is currently active
/// - the given context is a context for this engine
///
/// Not checking those preconditions results in undefined
/// behavior. Therefore, care must be taken to ensure that `unify` is
/// actually safe.
///
/// The macro [unifiable!] provides a way to safely implement this
/// trait by doing the precondition checks for you.
pub unsafe trait Unifiable {
    /// Unify this data with the given term reference.
    ///
    /// You'd generally not use this directly, but rather, go through [Term::unify].
    fn unify(&self, term: &Term) -> bool;
}

unsafe impl<T: Unifiable> Unifiable for &T {
    fn unify(&self, term: &Term) -> bool {
        (*self).unify(term)
    }
}

/// Trait for getting data from a term reference.
///
/// # Safety
/// This is marked unsafe because in order to do term getting, we
/// must be sure that
/// - the term is created on the engine which is currently active
/// - the given context is a context for this engine
///
/// Not checking those preconditions results in undefined
/// behavior. Therefore, care must be taken to ensure that `get` is
/// actually safe.
///
/// The macro [term_getable!] provides a way to safely implement this
/// trait by doing the precondition checks for you.
pub unsafe trait TermGetable: Sized {
    /// Get data from a term reference.
    ///
    /// You'd generally not use this directly, but rather, go through [Term::get].
    fn get(term: &Term) -> Option<Self>;

    /// Get the name of this data type for use in exception reporting.
    fn name() -> &'static str;
}

/// Trait for putting data into a term reference.
///
/// Unlike unification, putting data into a term replaces the term
/// entirely. This is a non-logical operation that doesn't play nice
/// with backtracking. You're generally better off using unification.
///
/// # Safety
/// This is marked unsafe because in order to do term putting, we
/// must be sure that
/// - the term is created on the engine which is currently active
/// - the given context is a context for this engine
///
/// Not checking those preconditions results in undefined
/// behavior. Therefore, care must be taken to ensure that `put` is
/// actually safe.
///
/// The macro [term_putable!] provides a way to safely implement this
/// trait by doing the precondition checks for you.
pub unsafe trait TermPutable {
    /// Put data into the term reference.
    ///
    /// You'd generally not use this directly, but rather, go through [Term::put].
    fn put(&self, term: &Term);
}

/// Easily implement [Unifiable].
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// struct Foo {num: u64}
///
/// unifiable!{
///     (self:Foo, term) => {
///         // Body needs to return a bool indicating success or failure.
///         // Failure may also be an exception. The wrapper will check for this.
///         attempt(term.unify(self.num)).unwrap_or(false)
///     }
/// }
///
/// fn do_something(term: &Term) -> PrologResult<()> {
///     term.unify(Foo{num:42})
/// }
/// ```
#[macro_export]
macro_rules! unifiable {
    (($self_:ident : $t:ty, $term_: ident) => $b: block) => {
        // unsafe justification: this macro inserts an assert in front
        // of the unification body, to ensure that we are given a term
        // that matches the given context, and that the currently
        // activated engine is one for which this term was created.
        unsafe impl<'a> Unifiable for $t {
            fn unify(&$self_, $term_: &Term) -> bool {
                $term_.assert_term_handling_possible();

                $b
            }
        }
    }
}

/// Easily implement [TermGetable].
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// struct Foo {num: u64}
///
/// term_getable!{
///     (Foo, term) => {
///         // Body needs to return an Option indicating success or failure.
///         // Failure may also be an exception. The wrapper will check for this.
///         let num: u64 = attempt_opt(term.get()).unwrap_or(None)?;
///         Some(Foo { num })
///     }
/// }
///
/// fn do_something(term: &Term) -> PrologResult<()> {
///     let foo: Foo = term.get()?;
///     println!("foo is {}", foo.num);
///     Ok(())
/// }
/// ```
#[macro_export]
macro_rules! term_getable {
    (($t:ty, $term_: ident) => $b: block) => {
        // unsafe justification: this macro inserts an assert in front
        // of the term get body, to ensure that we are given a term
        // that matches the given context, and that the currently
        // activated engine is one for which this term was created.
        unsafe impl<'a> TermGetable for $t {
            fn get($term_: &Term) -> Option<Self> {
                $term_.assert_term_handling_possible();

                $b
            }

            fn name() -> &'static str {
                stringify!($t)
            }
        }
    };

    (($t:ty, $name: tt, $term_: ident) => $b: block) => {
        // unsafe justification: this macro inserts an assert in front
        // of the term get body, to ensure that we are given a term
        // that matches the given context, and that the currently
        // activated engine is one for which this term was created.
        unsafe impl<'a> TermGetable for $t {
            fn get($term_: &Term) -> Option<Self> {
                $term_.assert_term_handling_possible();

                $b
            }

            fn name() -> &'static str {
                $name
            }
        }
    };
}

/// Easily implement [TermPutable].
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// struct Foo {num: u64}
///
/// term_putable!{
///     (self:Foo, term) => {
///         // body returns nothing, but underlying code may raise an exception on the prolog engine.
///         term.put(&self.num).unwrap_or(());
///     }
/// }
///
/// fn do_something(term: &Term) -> PrologResult<()> {
///     term.put(&Foo{num:42})?;
///     Ok(())
/// }
/// ```
#[macro_export]
macro_rules! term_putable {
    (($self_:ident : $t:ty, $term_: ident) => $b: block) => {
        // unsafe justification: this macro inserts an assert in front
        // of the term get body, to ensure that we are given a term
        // that matches the given context, and that the currently
        // activated engine is one for which this term was created.
        unsafe impl<'a> TermPutable for $t {
            fn put(&$self_, $term_: &Term) {
                $term_.assert_term_handling_possible();

                $b
            }
        }
    };
}

unifiable! {
    (self:Term<'a>, term) => {
        if self.origin.origin_engine_ptr() != term.origin.origin_engine_ptr() {
            panic!("terms being unified are not part of the same engine");
        }

        // unsafe justification: the fact that we have terms here means we are dealing with some kind of active context, and therefore an initialized swipl. The check above has made sure that both terms are part of the same engine too, and the unifiable! macro takes care of checking that we're on the correct engine.
        let result = unsafe { PL_unify(self.term, term.term) };

        // TODO we should actually properly test for an exception here.
        result != 0
    }
}

term_putable! {
    (self:Term<'a>, term) => {
        if self.origin.origin_engine_ptr() != term.origin.origin_engine_ptr() {
            panic!("terms being unified are not part of the same engine");
        }

        unsafe { PL_put_term(term.term, self.term); }
    }
}

unifiable! {
    (self:bool, term) => {
        let num = match self {
            true => 1,
            false => 0,
        };
        let result = unsafe { PL_unify_bool(term.term, num) };

        result != 0
    }
}

term_getable! {
    (bool, term) => {
        let mut out = 0;
        let result = unsafe { PL_get_bool(term.term, &mut out) };
        if result == 0 {
            None
        }
        else {
            Some(out != 0)
        }
    }
}

term_putable! {
    (self:bool, term) => {
        let bool_num: usize = match self {
            true => 1,
            false => 0
        };
        unsafe { PL_put_bool(term.term, bool_num.try_into().unwrap()) };
    }
}

unifiable! {
    (self:u64, term) => {
        // there's a possibility for this function to error, we need to check.
        // but there may already be an error waiting, so we need to stash that.

        // Note: this seems to be inconsistent with all the other
        // unify functions, but similar to the way the cvt
        // compatibility functions work.
        unsafe {with_cleared_exception(|| {
            let result = PL_unify_uint64(term.term, *self);
            let error_term_ref = pl_default_exception();
            if error_term_ref != 0 {
                let ctx = unmanaged_engine_context();
                let error_term = ctx.new_term_ref();
                PL_unify(error_term.term_ptr(), error_term_ref);
                PL_clear_exception();
                let comparison_term = match term!{ctx: error(type_error(integer, _), _)} {
                    Ok(t) => t,
                    // let wrapper pick up the error
                    Err(_) => return false
                };
                // really should be a non-unifying compare but meh
                if comparison_term.unify(&error_term).is_err() {
                    PL_raise_exception(error_term.term_ptr());
                }
                error_term.reset();
                false
            }
            else {
                result != 0
            }
        })}
    }
}

term_getable! {
    (u64, "integer", term) => {
        if unsafe { PL_is_integer(term.term) == 0 } {
            return None;
        }

        // there's a possibility for this function to error, we need to check.
        // but there may already be an error waiting, so we need to stash that.
        unsafe {with_cleared_exception(|| {
            let mut out = 0;
            let result = PL_cvt_i_uint64(term.term, &mut out);
            let error_term_ref = pl_default_exception();
            if error_term_ref != 0 {
                let ctx = unmanaged_engine_context();
                let error_term = ctx.new_term_ref();
                PL_unify(error_term.term_ptr(), error_term_ref);
                PL_clear_exception();
                let comparison_term = match term!{ctx: error(domain_error(not_less_than_zero, _), _)} {
                    Ok(r) => r,
                    // let wrapper pick up the error
                    Err(_) => return None
                };
                // really should be a non-unifying compare but meh
                if comparison_term.unify(&error_term).is_err() {
                    PL_raise_exception(error_term.term_ptr());
                }
                error_term.reset();
                None
            }
            else if result == 0 {
                None
            }
            else {
                Some(out)
            }
        })}
    }
}

term_putable! {
    (self:u64, term) => {
        unsafe { PL_put_uint64(term.term, *self) };
    }
}

unifiable! {
    (self:i64, term) => {
        let result = unsafe { PL_unify_int64(term.term, *self) };

        result != 0
    }
}

term_getable! {
    (i64, "integer", term) => {
        let mut out = 0;
        let result = unsafe { PL_get_int64(term.term, &mut out) };
        if result == 0 {
            None
        }
        else {
            Some(out)
        }
    }
}

term_putable! {
    (self:i64, term) => {
        unsafe { PL_put_int64(term.term, *self) };
    }
}

unifiable! {
    (self:f64, term) => {
        let result = unsafe { PL_unify_float(term.term, *self) };

        result != 0
    }
}

term_getable! {
    (f64, "float", term) => {
        let mut out = 0.0;
        let result = unsafe { PL_get_float(term.term, &mut out) };
        if result == 0 {
            None
        }
        else {
            Some(out)
        }
    }
}

term_putable! {
    (self:f64, term) => {
        unsafe { PL_put_float(term.term, *self) };
    }
}

unifiable! {
    (self:&str, term) => {
        let result = unsafe { PL_unify_chars(
            term.term_ptr(),
            (PL_STRING | REP_UTF8).try_into().unwrap(),
            self.len(),
            self.as_bytes().as_ptr() as *const c_char,
        )
        };

        result != 0
    }
}

unifiable! {
    (self:String, term) => {
        let result = unsafe { PL_unify_chars(
            term.term_ptr(),
            (PL_STRING | REP_UTF8).try_into().unwrap(),
            self.len(),
            self.as_bytes().as_ptr() as *const c_char,
        )
        };

        result != 0
    }
}

term_getable! {
    (String, "string", term) => {
        match term.get_str(|s|s.map(|s|s.to_owned())) {
            Ok(r) => r,
            // ignore error - it'll be picked up by the wrapper
            Err(_) => None
        }
    }
}

term_putable! {
    (self:str, term) => {
        unsafe { PL_put_chars(
            term.term_ptr(),
            (PL_STRING | REP_UTF8).try_into().unwrap(),
            self.len(),
            self.as_bytes().as_ptr() as *const c_char,
        )
        };
    }
}

term_putable! {
    (self:String, term) => {
        unsafe { PL_put_chars(
            term.term_ptr(),
            (PL_STRING | REP_UTF8).try_into().unwrap(),
            self.len(),
            self.as_bytes().as_ptr() as *const c_char,
        )
        };
    }
}

unifiable! {
    (self: &[u8], term) => {
        let result = unsafe { PL_unify_string_nchars(term.term_ptr(), self.len(), self.as_ptr() as *const std::os::raw::c_char) };

        result != 0
    }
}

term_getable! {
    (Vec<u8>, "string", term) => {
        let mut string_ptr = std::ptr::null_mut();
        let mut len = 0;
        let result = unsafe { PL_get_string(term.term_ptr(), &mut string_ptr, &mut len) };
        if result == 0 {
            return None;
        }

        let slice = unsafe { std::slice::from_raw_parts(string_ptr as *const u8, len) };
        let mut result: Vec<u8> = Vec::with_capacity(len);
        result.extend_from_slice(slice);

        Some(result)
    }
}

term_putable! {
    (self: [u8], term) => {
        unsafe { PL_put_string_nchars(term.term_ptr(), self.len(), self.as_ptr() as *const std::os::raw::c_char) };
    }

}

/// Unit struct representing an empty list in SWI-Prolog.
pub struct Nil;
unifiable! {
    (self:Nil, term) => {
        let result = unsafe { PL_unify_nil(term.term_ptr()) };

        result != 0
    }
}

term_getable! {
    (Nil, "list", term) => {
        let result = unsafe { PL_get_nil(term.term_ptr()) };

        match result != 0 {
            true => Some(Nil),
            false => None
        }
    }
}

term_putable! {
    (self:Nil, term) => {
        unsafe { PL_put_nil(term.term_ptr()); }
    }
}

unsafe impl<'a, T> Unifiable for &'a [T]
where
    &'a T: 'a + Unifiable,
{
    fn unify(&self, term: &Term) -> bool {
        term.assert_term_handling_possible();
        // let's create a fake context so we can make a frame
        // unsafe justification: This context will only exist inside this implementation. We know we are in some valid context for term handling, so that's great.
        let context = unsafe { unmanaged_engine_context() };

        let frame = context.open_frame();
        let list = frame.new_term_ref();

        if list.unify(term).is_err() {
            return false;
        }

        for t in self.iter() {
            // create a new frame to ensure we don't just keep putting head and tail refs on the stack.
            let frame2 = frame.open_frame();
            let head = frame2.new_term_ref();
            let tail = frame2.new_term_ref();

            // if list unification fails, or head can not be unified with current term,
            // return false early.
            // note: || is short-circuiting OR
            if unsafe { PL_unify_list(list.term_ptr(), head.term_ptr(), tail.term_ptr()) == 0 }
                || head.unify(t).is_err()
            {
                return false;
            }

            // reset term - should really be a method on term
            unsafe { PL_put_variable(list.term_ptr()) };

            if list.unify(tail).is_err() {
                return false;
            }

            frame2.close();
        }

        let success = unsafe { PL_unify_nil(list.term_ptr()) != 0 };
        frame.close();

        success
    }
}

unsafe impl<T: TermGetable> TermGetable for Vec<T> {
    fn get(term: &Term) -> Option<Self> {
        term.assert_term_handling_possible();

        let mut result: Vec<T> = Vec::new();

        // let's create a fake context so we can make a frame
        // unsafe justification: This context will only exist inside this implementation. We know we are in some valid context for term handling, so that's great.
        let context = unsafe { unmanaged_engine_context() };

        let frame = context.open_frame();
        let list = frame.new_term_ref();
        list.unify(term).unwrap();
        let mut success = true;
        loop {
            if unsafe { PL_get_nil(list.term_ptr()) != 0 } {
                break;
            }

            let frame2 = frame.open_frame();
            let head = frame2.new_term_ref();
            let tail = frame2.new_term_ref();
            success =
                unsafe { PL_get_list(list.term_ptr(), head.term_ptr(), tail.term_ptr()) != 0 };

            if !success {
                break;
            }

            let elt = head.get();
            if elt.is_err() {
                success = false;
                break;
            }

            result.push(elt.unwrap());

            // reset term - should really be a method on term
            unsafe { PL_put_variable(list.term_ptr()) };
            list.unify(tail).unwrap();
            frame2.close();
        }

        frame.close();

        match success {
            true => Some(result),
            false => None,
        }
    }

    fn name() -> &'static str {
        "list"
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn unify_some_terms_with_success() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        let term2 = context.new_term_ref();
        assert!(term1.unify(42_u64).is_ok());
        assert!(term2.unify(42_u64).is_ok());
        assert!(term1.unify(&term2).is_ok());
    }

    #[test]
    fn unify_some_terms_with_failure() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        let term2 = context.new_term_ref();
        assert!(term1.unify(42_u64).is_ok());
        assert!(term2.unify(43_u64).is_ok());
        assert!(term1.unify(&term2).is_err());
    }

    #[test]
    fn unify_twice_different_failure() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = context.new_term_ref();
        assert!(term.unify(42_u64).is_ok());
        assert!(term.unify(43_u64).is_err());
    }

    #[test]
    fn unify_twice_different_with_rewind_success() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();
        let term = context.new_term_ref();
        let context2 = context.open_frame();

        assert!(term.unify(42_u64).is_ok());
        context2.rewind();
        assert!(term.unify(43_u64).is_ok());
    }

    #[test]
    fn unify_and_get_bools() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        assert!(term1.get::<bool>().unwrap_err().is_failure());
        term1.unify(true).unwrap();
        assert!(term1.get::<bool>().unwrap());
        let term2 = context.new_term_ref();
        term2.unify(false).unwrap();
        assert!(!term2.get::<bool>().unwrap());
    }

    #[test]
    fn unify_and_get_u64s() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        assert!(term1.get::<u64>().unwrap_err().is_failure());
        term1.unify(42_u64).unwrap();
        assert_eq!(42, term1.get::<u64>().unwrap());
        let term2 = context.new_term_ref();
        term2.unify(0xffffffff_u64).unwrap();
        assert_eq!(0xffffffff, term2.get::<u64>().unwrap());
        let term3 = context.new_term_ref();
        term3.unify(0xffffffffffffffff_u64).unwrap();
        assert_eq!(0xffffffffffffffff, term3.get::<u64>().unwrap());
    }

    #[test]
    fn put_and_get_u64s() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        assert!(term1.get::<u64>().unwrap_err().is_failure());
        term1.put_val(42_u64).unwrap();
        assert_eq!(42, term1.get::<u64>().unwrap());
    }

    #[test]
    fn unify_and_get_string_refs() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        term1.get_str(|s| assert!(s.is_none())).unwrap();
        term1.unify("hello there").unwrap();
        term1
            .get_str(|s| assert_eq!("hello there", s.unwrap()))
            .unwrap();
    }

    #[test]
    fn unify_and_get_strings() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        assert!(term1.get::<String>().unwrap_err().is_failure());
        term1.unify("hello there").unwrap();
        assert_eq!("hello there", term1.get::<String>().unwrap());
    }

    #[test]
    fn unify_and_get_different_types_fails() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        term1.unify(42_u64).unwrap();
        assert!(term1.get::<bool>().unwrap_err().is_failure());
    }

    #[test]
    fn unify_list() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = context.new_term_ref();
        assert!(term.unify([42_u64, 12, 3, 0, 5].as_ref()).is_ok());

        assert_eq!(
            [42_u64, 12, 3, 0, 5].as_ref(),
            term.get::<Vec<u64>>().unwrap()
        );
    }

    #[test]
    fn unify_term_list() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = context.new_term_ref();
        let elt1 = context.new_term_ref();
        let elt2 = context.new_term_ref();
        elt1.unify(42_u64).unwrap();
        elt2.unify(43_u64).unwrap();
        assert!(term.unify([elt1, elt2].as_ref()).is_ok());

        assert_eq!([42_u64, 43].as_ref(), term.get::<Vec<u64>>().unwrap());
    }

    use crate::term;

    #[test]
    fn create_nested_functor_term() -> PrologResult<()> {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let var_term = context.new_term_ref();
        let _term = term! {context: foo(bar([a,b,42], baz(42, (1,((3)),true), #&var_term), quux(Var), quux2(Var)), "hi", yay(OtherVar, #&var_term), _, _, _a, _a)}?;
        var_term.unify(crate::atom::atomable("hallo")).unwrap();

        // TODO actually query this term for validity
        Ok(())
    }

    #[test]
    fn throw_error() -> PrologResult<()> {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let error_term = term! {context: error(some_error, _)}?;
        context.raise_exception::<()>(&error_term).unwrap_err();
        assert!(context.has_exception());

        Ok(())
    }

    #[test]
    fn work_with_binary_data_strings() -> PrologResult<()> {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let binary_data = vec![42, 0, 5];
        let term = context.new_term_ref();
        term.put(binary_data.as_slice())?;
        let retrieved: Vec<u8> = term.get()?;

        assert_eq!(binary_data, retrieved);

        term.unify(binary_data.as_slice())
    }

    #[test]
    fn unify_list_should_fail_for_early_unmatched_value() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = context.new_term_ref();
        term.unify([1u64, 2u64, 3u64].as_slice()).unwrap();

        assert!(!attempt(term.unify([2u64, 2u64, 3u64].as_slice())).unwrap());
    }

    #[test]
    fn term_equality() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let [term1, term2, term3] = context.new_term_refs();
        term1.unify(42_u64).unwrap();
        term2.unify(42_u64).unwrap();
        term3.unify(43_u64).unwrap();
        assert_eq!(term1, term2);
        assert_ne!(term1, term3);
    }

    #[test]
    fn term_equality_different_context() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term1 = context.new_term_ref();
        let frame = context.open_frame();
        let [term2, term3] = frame.new_term_refs();

        term1.unify(42_u64).unwrap();
        term2.unify(42_u64).unwrap();
        term3.unify(43_u64).unwrap();
        assert_eq!(term1, term2);
        assert_ne!(term1, term3);
    }

    #[test]
    fn term_order() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let mut terms: [Term; 3] = context.new_term_refs();

        terms[0].unify("foo").unwrap();
        terms[1].unify("bar").unwrap();
        terms[2].unify("baz").unwrap();

        terms.sort();

        assert_eq!("bar", terms[0].get::<String>().unwrap());
        assert_eq!("baz", terms[1].get::<String>().unwrap());
        assert_eq!("foo", terms[2].get::<String>().unwrap());
    }

    #[test]
    fn get_arg_ex_raises_exception_for_wrong_arity() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = term! {context: foo(bar)}.unwrap();

        let expected = term! {context: error(arity_error, _)}.unwrap();
        let result: PrologResult<u64> = term.get_arg_ex(2);
        assert_eq!(PrologError::Exception, result.err().unwrap());
        assert!(context.has_exception());
        context.with_exception(|e| e.unwrap().unify(&expected).unwrap());
    }

    #[test]
    fn get_arg_ex_raises_exception_for_non_compound() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = term! {context: 42}.unwrap();

        let expected = term! {context: error(arity_error, _)}.unwrap();
        let result: PrologResult<u64> = term.get_arg_ex(2);
        assert_eq!(PrologError::Exception, result.err().unwrap());
        assert!(context.has_exception());
        context.with_exception(|e| e.unwrap().unify(&expected).unwrap());
    }

    #[test]
    fn get_arg_ex_raises_exception_for_float_with_expected_int() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = term! {context: foo(42.3)}.unwrap();

        let expected = term! {context: error(type_error(integer,42.3), _)}.unwrap();
        let result: PrologResult<u64> = term.get_arg_ex(1);
        assert_eq!(PrologError::Exception, result.err().unwrap());
        assert!(context.has_exception());
        context.with_exception(|e| println!("{}", context.string_from_term(e.unwrap()).unwrap()));
        context.with_exception(|e| e.unwrap().unify(&expected).unwrap());
    }

    #[test]
    fn get_arg_ex_works_with_expected_type_and_arity() {
        let engine = Engine::new();
        let activation = engine.activate();
        let context: Context<_> = activation.into();

        let term = term! {context: foo(42)}.unwrap();

        let result: PrologResult<u64> = term.get_arg_ex(1);
        assert_eq!(42, result.unwrap());
        assert!(!context.has_exception());
    }
}