1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
//! Prolog contexts.
//!
//! As you interact with SWI-Prolog, the underlying prolog engine
//! moves into different states, where different things are
//! allowed. We keep track of this underlying state through Context
//! objects.
//!
//! Currently, there's four kind of states that we keep track of:
//! - ActivatedEngine - this is the state an engine will be in when we
//! just created it. If you're directly working with engines, this
//! will be your initial state.
//! - Unmanaged - this is the state an engine will be in when prolog
//! is calling into the rust library, for example, when a foreign
//! predicate implemented in rust is being called.
//! - Framed - In any context, you can create a prolog frame. A prolog
//! frame allows you to rewind the state of all prolog terms to their
//! state at the time of frame creation.
//! - OpenCall - While calling into prolog, this is the context you'll
//! be in as you're walking through the solutions. This is a special
//! context where a lot of the normal features are disabled.
//!
//! Contexts are either active or inactive. A context starts out as
//! active, but as soon as you do something that creates a new context
//! (create a frame, open a query), the context will become
//! inactive. Once the created context is dropped, the original
//! context will become active again.
//!
//! With the exception of the OpenCall context, all contexts let you
//! create new term refs, which are handles to data on the prolog
//! stack. These term refs can only be created while the context is
//! active. However, they can be manipulated as long as the context
//! that created them exists. As soon as the context is dropped
//! though, the Term will become invalid and trying to do anything
//! with it will result in a compile error.
//!
//! The OpenCall context is special in that no new terms are allowed
//! to be created, nor are you allowed to open another query. It is
//! however possible to create a new frame in this context, which
//! would once again put you in a state where these things are
//! possible. Of course, you'll have to drop this frame before you're
//! able to manipulate the OpenCall context again (such as retrieving
//! the next solution from the query).
//!
//! Various operations may cause the underlying engine to go into an
//! exceptional state. This is signaled by these operations returning
//! an `Err(PrologError::Exception)`. This means that a special
//! exception term has been set. Most context operations are
//! impossible while in this state, and attempting to perform them
//! will result in a panic. Your options are either to return back
//! into prolog (if you're implementing a foreign predicate), which
//! will then raise this exception in prolog, or to clear the
//! exception.
#[cfg(feature = "serde")]
use crate::term::ser::SerializerConfiguration;
use super::atom::*;
use super::callable::*;
use super::engine::*;
use super::fli::*;
use super::module::*;
use super::result::*;
use super::stream::*;
use super::term::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::cell::Cell;
use std::convert::TryInto;
use std::mem::MaybeUninit;
use swipl_macros::pred;
use swipl_macros::{prolog, term};
pub(crate) unsafe fn with_cleared_exception<R>(f: impl FnOnce() -> R) -> R {
let error_term_ref = pl_default_exception();
if error_term_ref != 0 {
let backup_term_ref = PL_new_term_ref();
assert!(PL_unify(backup_term_ref, error_term_ref) != 0);
PL_clear_exception();
let result = f();
PL_raise_exception(backup_term_ref);
PL_reset_term_refs(backup_term_ref);
result
} else {
f()
}
}
/// A term wrapper for the special exception term.
///
/// The exception term lives in a special place on the prolog stack
/// where frame rewinds have no effect.
pub struct ExceptionTerm<'a>(Term<'a>);
impl<'a> ExceptionTerm<'a> {
/// Clear the exception, so that the engine is no longer in an
/// exceptional state.
pub fn clear_exception(self) {
self.assert_term_handling_possible();
unsafe { PL_clear_exception() }
}
/// Call the given function with a copy of the exception term in a context where the exception has been cleared.
///
/// This function is marked unsafe because it is not safe to use
/// the original ExceptionTerm from within the given function, but
/// we still have a handle to it through self. The caller will
/// have to ensure that the function that is passed in will not
/// use this exception term.
unsafe fn with_cleared_exception<'b, C: ContextType, R>(
&'b self,
ctx: &'b Context<C>,
f: impl FnOnce(&Term) -> R,
) -> R {
ctx.assert_activated();
let backup_term_ref = PL_new_term_ref();
assert!(PL_unify(backup_term_ref, self.0.term_ptr()) != 0);
let backup_term = Term::new(backup_term_ref, ctx.as_term_origin());
PL_clear_exception();
// should we handle panics?
let result = f(&backup_term);
PL_raise_exception(backup_term_ref);
backup_term.reset();
result
}
}
impl<'a> std::ops::Deref for ExceptionTerm<'a> {
type Target = Term<'a>;
fn deref(&self) -> &Term<'a> {
&self.0
}
}
/// A context that the underlying prolog engine is in.
///
/// See the module documentation for an explanation of this type.
pub struct Context<'a, T: ContextType> {
parent: Option<&'a dyn ContextParent>,
pub context: T,
engine: PL_engine_t,
activated: Cell<bool>,
exception_handling: Cell<bool>,
}
impl<'a, T: ContextType> Context<'a, T> {
unsafe fn new_activated_without_parent(context: T, engine: PL_engine_t) -> Self {
Context {
parent: None,
context,
engine,
activated: Cell::new(true),
exception_handling: Cell::new(false),
}
}
pub(crate) unsafe fn new_activated<'b, T2: ContextType>(
parent: &'a Context<'b, T2>,
context: T,
engine: PL_engine_t,
) -> Self {
Context {
parent: Some(parent as &dyn ContextParent),
context,
engine,
activated: Cell::new(true),
exception_handling: Cell::new(false),
}
}
pub(crate) unsafe fn deactivate(&self) {
self.activated.set(false)
}
/// Panics if this context is not active.
pub fn assert_activated(&self) {
if !self.activated.get() {
panic!("tried to use inactive context");
}
}
/// Panics if the engine is in an exceptional state.
pub fn assert_no_exception(&self) {
if self.has_exception() {
panic!("tried to use context which has raised an exception");
}
}
/// Returns the underlying engine pointer.
pub fn engine_ptr(&self) -> PL_engine_t {
self.engine
}
/// Return the engine pointer as a `TermOrigin`, which is used in the construction of a `Term` in unsafe code.
pub(crate) fn as_term_origin(&self) -> TermOrigin {
unsafe { TermOrigin::new(self.engine_ptr()) }
}
/// Wrap the given term_t into a Term with a lifetime corresponding to this context.
///
/// # Safety
/// This is unsafe because there's no way of checking that the
/// given term_t is indeed from this context. The caller will have
/// to ensure that the term lives at least as long as this
/// context.
pub unsafe fn wrap_term_ref(&self, term: term_t) -> Term {
self.assert_activated();
Term::new(term, self.as_term_origin())
}
/// Returns true if the underlying engine is in an exceptional state.
pub fn has_exception(&self) -> bool {
self.assert_activated();
unsafe { pl_default_exception() != 0 }
}
/// Clear the current exception if there is any.
pub fn clear_exception(&self) {
self.with_uncleared_exception(|e| match e {
None => (),
Some(e) => e.clear_exception(),
})
}
/// Call the given function with the exception term, if it exists.
///
/// The given function is able to clear the exception term, but
/// not much else is allowed from safe code. Any attempt to do a
/// get, put or unify with the given term will result in a panic.
pub fn with_uncleared_exception<'b, R>(
&'b self,
f: impl FnOnce(Option<ExceptionTerm<'b>>) -> R,
) -> R {
self.assert_activated();
if self.exception_handling.replace(true) {
panic!("re-entered exception handler");
}
let exception = unsafe { pl_default_exception() };
let arg = match exception == 0 {
true => None,
false => {
let term = unsafe { self.wrap_term_ref(exception) };
Some(ExceptionTerm(term))
}
};
// TODO should we take panics into account when clearing exception handling status?
let result = f(arg);
self.exception_handling.set(false);
result
}
/// Call the given function with a copy of the exception term, from a context where the exception state has temporarily been cleared.
///
/// This allows analysis on the exception term using all the
/// normal safe functions for doing so. When the function returns,
/// the engine will go back into an exceptional state with the
/// original exception term.
pub fn with_exception<R>(&self, f: impl FnOnce(Option<&Term>) -> R) -> R {
self.with_uncleared_exception(|e| match e {
None => f(None),
Some(e) => unsafe { e.with_cleared_exception(self, |e| f(Some(e))) },
})
}
/// Put the engine in an exceptional state.
///
/// The given term will be copied and put into the exception
/// term. This function always returns
/// `Err(PrologError::Exception)`.
pub fn raise_exception<R>(&self, term: &Term) -> PrologResult<R> {
self.assert_activated();
if term.is_var() {
panic!("tried to raise a var as an exception");
} else {
unsafe {
PL_raise_exception(term.term_ptr());
}
}
Err(PrologError::Exception)
}
/// Retrieve the current output stream.
pub fn current_output<'b>(&self) -> WritablePrologStream<'b> {
assert_some_engine_is_active();
unsafe {
let current_output = *_PL_streams().offset(4);
WritablePrologStream::new(current_output)
}
}
/// Handle any outstanding synchronous signals, including user interrupts.
///
/// This could return PrologError::Exception, which should
/// normally be propagated all the way back to SWI-Prolog. In
/// particular, the raised exception will be a term containing the
/// atom '$aborted' for the case where a user interrupts.
///
/// This should be regularly called for long-running foreign code.
/// SWI-Prolog handles signals synchronously at safe points, and
/// therefore will never do so while a foreign predicate is
/// running. The most visible outcome of this is that long-running
/// predicates can normally not be interrupted by the user when
/// they press ctrl-c once.
///
/// On success, the number of outstanding signals handled is
/// returned.
pub fn handle_signals(&self) -> PrologResult<u32> {
let result: i32 = unsafe { PL_handle_signals() };
if result == -1 {
Err(PrologError::Exception)
} else {
Ok(result as u32)
}
}
}
trait ContextParent {
fn reactivate(&self);
}
impl<'a, T: ContextType> ContextParent for Context<'a, T> {
fn reactivate(&self) {
if self.activated.replace(true) {
panic!("context already active");
}
}
}
impl<'a, T: ContextType> Drop for Context<'a, T> {
fn drop(&mut self) {
if let Some(parent) = self.parent {
parent.reactivate();
}
}
}
/// A type of context.
///
/// This is the object that is wrapped by [Context]. Implementors can
/// use this to hold context-specific information. Any functions are
/// to be implemented on `Context<YourContextType>`.
///
/// # Safety
/// An active context ensures that callers are allowed to interact
/// with SWI-Prolog environments. Therefore, a bunch of assertions are
/// not performed. If an implementor to ensure that SWI-Prolog
/// environment is active, then this might lead to undefined behavior.
pub unsafe trait ContextType {}
/// Context type for an active engine. This wraps an `EngineActivation`.
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// let engine = Engine::new();
/// let activation = engine.activate();
/// let context: Context<ActivatedEngine> = activation.into();
/// // Note: Context<_> would also work as a type annotation
/// ```
pub struct ActivatedEngine<'a> {
_activation: EngineActivation<'a>,
}
impl<'a> From<EngineActivation<'a>> for Context<'a, ActivatedEngine<'a>> {
fn from(activation: EngineActivation<'a>) -> Context<'a, ActivatedEngine<'a>> {
let engine = activation.engine_ptr();
let context = ActivatedEngine {
_activation: activation,
};
unsafe { Context::new_activated_without_parent(context, engine) }
}
}
unsafe impl<'a> ContextType for ActivatedEngine<'a> {}
/// Context type for an unmanaged engine.
///
/// See [unmanaged_engine_context] for usage.
pub struct Unmanaged {
// only here to prevent automatic construction
_x: (),
}
unsafe impl ContextType for Unmanaged {}
/// Create an unmanaged context for situations where the thread has an engine that rust doesn't know about.
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// # initialize_swipl_noengine();
/// # unsafe { swipl::fli::PL_thread_attach_engine(std::ptr::null_mut()); }
/// let context = unsafe { unmanaged_engine_context() };
/// # unsafe { swipl::fli::PL_thread_destroy_engine(); }
/// ```
///
/// # Safety
/// This is unsafe to call if we are not in a swipl environment, or if
/// some other context is active. Furthermore, the lifetime will most
/// definitely be wrong. This should be used by code that doesn't
/// promiscuously spread this context. all further accesses should be
/// through borrows.
pub unsafe fn unmanaged_engine_context() -> Context<'static, Unmanaged> {
let current = current_engine_ptr();
if current.is_null() {
panic!("tried to create an unmanaged engine context, but no engine is active");
}
Context::new_activated_without_parent(Unmanaged { _x: () }, current)
}
enum FrameState {
Active,
Closed,
}
/// Context type for a prolog frame.
///
/// # Examples
/// Discard a frame through dropping:
/// ```
/// use swipl::prelude::*;
/// fn main() -> PrologResult<()> {
/// // create a context
/// let engine = Engine::new();
/// let activation = engine.activate();
/// let context: Context<_> = activation.into();
///
/// let term = context.new_term_ref();
///
/// {
/// let frame = context.open_frame();
/// term.unify(42_u64)?;
/// }
///
/// assert!(term.is_var());
///
/// Ok(())
/// }
/// ```
///
/// Discard a frame explicitely:
/// ```
/// use swipl::prelude::*;
/// fn main() -> PrologResult<()> {
/// // create a context
/// let engine = Engine::new();
/// let activation = engine.activate();
/// let context: Context<_> = activation.into();
///
/// let term = context.new_term_ref();
///
/// let frame = context.open_frame();
/// term.unify(42_u64)?;
///
/// frame.discard();
/// assert!(term.is_var());
///
/// Ok(())
/// }
/// ```
///
/// Close a frame:
/// ```
/// use swipl::prelude::*;
/// fn main() -> PrologResult<()> {
/// // create a context
/// let engine = Engine::new();
/// let activation = engine.activate();
/// let context: Context<_> = activation.into();
///
/// let term = context.new_term_ref();
///
/// let frame = context.open_frame();
/// term.unify(42_u64)?;
/// let term2 = frame.new_term_ref();
///
/// frame.close();
/// assert_eq!(42_u64, term.get()?);
/// // the following would result in a compile error:
/// // term2.unify(42_u64)?;
///
/// Ok(())
/// }
/// ```
///
/// Rewind a frame:
/// ```
/// use swipl::prelude::*;
/// fn main() -> PrologResult<()> {
/// // create a context
/// let engine = Engine::new();
/// let activation = engine.activate();
/// let context: Context<_> = activation.into();
///
/// let term = context.new_term_ref();
///
/// let frame = context.open_frame();
/// term.unify(42_u64)?;
///
/// let frame = frame.rewind();
/// // term is a variable again so the following unification will succeed
/// term.unify(43_u64)?;
///
/// frame.close();
/// assert_eq!(43_u64, term.get()?);
///
/// Ok(())
/// }
/// ```
///
pub struct Frame {
fid: PL_fid_t,
state: FrameState,
}
unsafe impl ContextType for Frame {}
impl Drop for Frame {
fn drop(&mut self) {
if let FrameState::Active = self.state {
// unsafe justification: all instantiations of Frame happen in
// this module. This module only instantiates the frame as
// part of the context mechanism. No 'free' Frames are ever
// returned. This mechanism ensures that the frame is only
// discarded if there's no inner frame still
// remaining. It'll also ensure that the engine of the
// frame is active while dropping.
unsafe {
PL_discard_foreign_frame(self.fid);
}
}
}
}
impl<'a> Context<'a, Frame> {
/// Close the frame.
///
/// After closing, any terms created in the context of this frame
/// will no longer be usable. Any data created and put in terms
/// that are still in scope will be retained.
pub fn close(mut self) {
self.context.state = FrameState::Closed;
// unsafe justification: reasons for safety are the same as in a normal drop. Also, since we just set framestate to discarded, the drop won't try to subsequently close this same frame.
unsafe { PL_close_foreign_frame(self.context.fid) };
}
/// Discard the frame.
///
/// This will destroy the frame. Any terms created in the context
/// of this frame will no longer be usable. Furthermore, any term
/// manipulation that happened since opening this frame will be
/// undone. This is equivalent to a rewind followed by a close.
pub fn discard(self) {
// would happen automatically but might as well be explicit
std::mem::drop(self)
}
/// Rewind the frame.
///
/// This will rewind the frame. Any terms created in the context
/// of this frame will no longer be usable. Furthermore, any term
/// manipulation that happened since opening this frame will be
/// undone.
///
/// This returns a new context which is to be used for further
/// manipulation of this frame.
pub fn rewind(self) -> Context<'a, Frame> {
self.assert_activated();
// unsafe justification: We just checked that this frame right here is currently the active context. Therefore it can be rewinded.
unsafe { PL_rewind_foreign_frame(self.context.fid) };
self
}
}
/// A trait marker for context types for which it is safe to open frames.
pub trait FrameableContextType: ContextType {}
impl FrameableContextType for Unmanaged {}
impl<'a> FrameableContextType for ActivatedEngine<'a> {}
impl FrameableContextType for Frame {}
impl<'a, C: FrameableContextType> Context<'a, C> {
/// Open a new frame.
///
/// This returns a new context for the frame. The current context
/// will become inactive, until the new context is dropped. This
/// may happen implicitely, when it goes out of scope, or
/// explicitely, by calling `close()` or `discard()` on it.
pub fn open_frame(&self) -> Context<Frame> {
self.assert_activated();
let fid = unsafe { PL_open_foreign_frame() };
let frame = Frame {
fid,
state: FrameState::Active,
};
self.activated.set(false);
unsafe { Context::new_activated(self, frame, self.engine) }
}
}
/// A trait marker for context types for which it is safe to open queries and create new term refs.
pub trait QueryableContextType: FrameableContextType {}
impl QueryableContextType for Unmanaged {}
impl<'a> QueryableContextType for ActivatedEngine<'a> {}
impl QueryableContextType for Frame {}
prolog! {
#[module("user")]
fn read_term_from_atom(atom_term, result, options);
#[module("user")]
#[name("call")]
fn open_call(term);
}
pub type GenericQueryableContext<'a> = Context<'a, GenericQueryableContextType>;
impl<'a, T: QueryableContextType> Context<'a, T> {
/// Create a new Term reference in the current context.
///
/// The term ref takes on the lifetime of the Context reference,
/// ensuring that it cannot outlive the context that created it.
pub fn new_term_ref(&self) -> Term {
self.assert_activated();
unsafe {
let term = PL_new_term_ref();
Term::new(term, self.as_term_origin())
}
}
/// create an array of term references.
///
/// The term refs all take on the lifetime of the Context
/// reference, ensuring that it cannot outlive the context that
/// created it.
pub fn new_term_refs<const N: usize>(&self) -> [Term; N] {
// TODO: this should be a compile time thing ideally
// TODO: swipl 9.1.19 changed the paramater type to usize
// if N > i32::MAX as usize {
// panic!("too many term refs requested: {}", N);
// }
#[allow(clippy::useless_conversion)]
let mut term_ptr = unsafe { PL_new_term_refs(N.try_into().unwrap()) };
let mut result: [MaybeUninit<Term>; N] = unsafe { MaybeUninit::uninit().assume_init() };
for r in result.iter_mut() {
let term = unsafe { Term::new(term_ptr, self.as_term_origin()) };
r.write(term);
term_ptr += 1;
}
// It would be nicer if we could do a transmute here, as
// transmute ensures that the conversion converts between
// types of the same size, but it seems like this doesn't work
// yet with const generic arrays. We do a pointer cast
// instead.
let magic = result.as_ptr() as *const [Term; N];
// allowing forget_non_drop cause I don't want us to accidentally drop something should the underlying things at one point implement drop.
#[allow(clippy::forget_non_drop)]
std::mem::forget(result);
unsafe { magic.read() }
}
/// create a vec of term references.
///
/// The term refs all take on the lifetime of the Context
/// reference, ensuring that it cannot outlive the context that
/// created it.
pub fn new_term_refs_vec(&self, count: usize) -> Vec<Term> {
#[allow(clippy::useless_conversion)]
let mut term_ptr = unsafe { PL_new_term_refs(count.try_into().unwrap()) };
let mut result = Vec::with_capacity(count);
for _ in 0..count {
let term = unsafe { Term::new(term_ptr, self.as_term_origin()) };
result.push(term);
term_ptr += 1;
}
result
}
/// Open a query.
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// # fn main() -> PrologResult<()> {
/// # let engine = Engine::new();
/// # let activation = engine.activate();
/// # let context: Context<_> = activation.into();
///
/// let query = context.open(pred!{format/2},
/// [&term!{context: "hello, ~q~n"}?,
/// &term!{context: ["world"]}?]);
/// query.next_solution()?;
/// query.cut();
/// #
/// # Ok(())
/// # }
/// ```
pub fn open<C: Callable<N>, const N: usize>(
&self,
callable: C,
args: [&Term; N],
) -> Context<C::ContextType> {
callable.open(self, None, args)
}
/// Open a query, get a single result and cut.
///
/// Example:
/// ```
/// # use swipl::prelude::*;
/// # fn main() -> PrologResult<()> {
/// # let engine = Engine::new();
/// # let activation = engine.activate();
/// # let context: Context<_> = activation.into();
///
/// context.call_once(pred!{format/2},
/// [&term!{context: "hello, ~q~n"}?,
/// &term!{context: ["world"]}?])?;
/// #
/// # Ok(())
/// # }
/// ```
pub fn call_once<C: Callable<N>, const N: usize>(
&self,
callable: C,
args: [&Term; N],
) -> PrologResult<()> {
let query = callable.open(self, None, args);
query.next_solution()?;
query.cut();
Ok(())
}
/// Open a query, optionally passing in a context module.
pub fn open_with_module<C: Callable<N>, const N: usize>(
&self,
callable: C,
module: Option<Module>,
args: [&Term; N],
) -> Context<C::ContextType> {
callable.open(self, module, args)
}
/// Turn the given string into a prolog term.
///
/// This uses the prolog predicate `read_term_from_atom/3` for the
/// heavy lifting.
///
/// Consider using the `term!` macro instead.
pub fn term_from_string(&self, s: &str) -> PrologResult<Term> {
let term = self.new_term_ref();
let frame = self.open_frame();
let arg1 = frame.new_term_ref();
let arg3 = frame.new_term_ref();
assert!(arg1.unify(s).is_ok());
assert!(arg3.unify(Nil).is_ok());
read_term_from_atom(&frame, &arg1, &term, &arg3).once()?;
frame.close();
Ok(term)
}
/// Turn the given string into a prolog term.
///
/// This uses the prolog predicate `read_term_from_atom/3` for the
/// heavy lifting.
///
/// Consider using the `term!` macro instead.
pub fn string_from_term(&self, t: &Term) -> PrologResult<String> {
let frame = self.open_frame();
let out = frame.new_term_ref();
frame.call_once(pred!("term_string/2"), [t, &out])?;
let s: String = out.get()?;
frame.close();
Ok(s)
}
/// Open a query for the given term using the `call/1` prolog predicate.
pub fn open_call(&'a self, t: &Term<'a>) -> Context<'a, impl OpenCall> {
open_call(self, t)
}
pub fn call_term_once(&'a self, t: &Term<'a>) -> PrologResult<()> {
let open_call = self.open_call(t);
open_call.next_solution()?;
open_call.cut();
Ok(())
}
/// Turn a result into a `PrologResult`.
///
/// For this to work, the `Err` component of the `Result` needs to
/// implement the trait `IntoPrologException`. This is currently
/// only the case for [std::io::Error].
pub fn try_or_die<R, E: IntoPrologException>(&self, r: Result<R, E>) -> PrologResult<R> {
match r {
Ok(ok) => Ok(ok),
Err(e) => {
let reset_term = self.new_term_ref();
let exception_term = e.into_prolog_exception(self)?;
let result = self.raise_exception(&exception_term);
unsafe {
reset_term.reset();
}
result
}
}
}
/// Turn a result into a `PrologResult`.
///
/// For this to work, the `Err` component of the `Result` needs to
/// implement the trait [Error](std::error::Error).
pub fn try_or_die_generic<R, E: std::error::Error>(&self, r: Result<R, E>) -> PrologResult<R> {
match r {
Ok(ok) => Ok(ok),
Err(e) => {
let reset_term = self.new_term_ref();
let msg = format!("{}", e);
// TODO: term macro doesn't like self, which is
// probably only a problem for things inside this
// crate but still should probably be resolved.
let self_ = self;
let exception_term = term! {self_: error(rust_error(#msg), _)}?;
let result = self.raise_exception(&exception_term);
unsafe {
reset_term.reset();
}
result
}
}
}
/// Iterate over a term list.
///
/// this returns a TermListIterator made out of the given
/// term. The TermListIterator will assume this is a cons cell,
/// and unify head and tail on each step of the iterator,
/// returning the head term and storing the tail term. If this
/// unification fails, the iterator stops.
///
/// Note that the terms created by this iterator are not
/// automatically thrown away. It is the caller's responsibility
/// to clean up terms if this is required, for example by using a
/// frame.
pub fn term_list_iter<'b>(&'b self, list: &Term) -> TermListIterator<'b, 'a, T> {
self.assert_activated();
let cur = self.new_term_ref();
cur.unify(list).expect("unifying terms should work");
TermListIterator { context: self, cur }
}
/// Retrieve a term list as a fixed-size array.
///
/// This is useful when a term contains a list whose supposed size
/// is known at compile time. If the actual list is larger than
/// this, only the first N elements are used. If the list is
/// smaller, the remaining terms in the array remain variables.
pub fn term_list_array<const N: usize>(&self, list: &Term) -> [Term; N] {
self.assert_activated();
// allocate these terms inside the scope of this context
let terms = self.new_term_refs();
let frame = self.open_frame();
let terms_iter = terms.iter();
let list_iter = frame.term_list_iter(list);
for (term, elt) in terms_iter.zip(list_iter) {
term.unify(elt).unwrap();
}
frame.close();
terms
}
/// Retrieve a term list as a Vec.
///
/// This will iterate over the given prolog list twice - once to
/// figure out its size, and then another time to actually
/// retrieve the elements. This is done so that we can allocate
/// the terms in a way that leaves no unused terms behind on the
/// stack (as would normally happen when iterating the list using
/// [term_list_iter](Context::term_list_iter)).
///
/// If you know in advance what the size is going to be (or you
/// know a reasonable upper bound), consider using
/// [term_list_array](Context::term_list_array). If you just wish
/// to iterate over the elements, or don't care about garbage
/// terms being created, consider using
/// [term_list_iter](Context::term_list_iter).
pub fn term_list_vec(&self, list: &Term) -> Vec<Term> {
self.assert_activated();
let frame = self.open_frame();
let count = frame.term_list_iter(list).count();
frame.discard();
// allocate these terms inside the scope of this context
let terms = self.new_term_refs_vec(count);
let frame = self.open_frame();
let terms_iter = terms.iter();
let list_iter = frame.term_list_iter(list);
for (term, elt) in terms_iter.zip(list_iter) {
term.unify(elt).unwrap();
}
frame.close();
terms
}
/// Retrieve compound terms as a fixed size array.
///
/// This will ensure that the given term is indeed a compound with
/// arity N. If this is true, N terms will be allocated in this
/// context, unified with the argument terms of the compound, and
/// returned as an array. If not, this method will fail.
pub fn compound_terms<const N: usize>(&self, compound: &Term) -> PrologResult<[Term; N]> {
self.assert_activated();
if N > (i32::MAX - 1) as usize {
panic!("requested compound term array too large: {}", N);
}
let mut size = 0;
if unsafe {
PL_get_compound_name_arity(compound.term_ptr(), std::ptr::null_mut(), &mut size) != 1
} {
return Err(PrologError::Failure);
}
if (size as usize) != N {
return Err(PrologError::Failure);
}
let terms: [Term; N] = self.new_term_refs();
for (i, term) in terms.iter().enumerate() {
unsafe {
assert!(PL_get_arg((i + 1) as i32, compound.term_ptr(), term.term_ptr()) == 1);
}
}
Ok(terms)
}
/// Retrieve compound terms as a Vec.
///
/// This will ensure that the given term is indeed a compound of
/// any arity. If this is true, arity terms will be allocated in
/// this context, unified with the argument terms of the compound,
/// and returned as a Vec. If not, this method will fail.
pub fn compound_terms_vec(&self, compound: &Term) -> PrologResult<Vec<Term>> {
self.assert_activated();
let mut size = 0;
if unsafe {
PL_get_compound_name_arity(compound.term_ptr(), std::ptr::null_mut(), &mut size) != 1
} {
return Err(PrologError::Failure);
}
let terms = self.new_term_refs_vec(size as usize);
for (i, term) in terms.iter().enumerate() {
unsafe {
assert!(PL_get_arg((i + 1) as i32, compound.term_ptr(), term.term_ptr()) == 1);
}
}
Ok(terms)
}
/// Retrieve compound terms as a fixed size Vec.
///
/// This will ensure that the given term is indeed a compound with
/// arity `count`. If this is true, `count` terms will be
/// allocated in this context, unified with the argument terms of
/// the compound, and returned as an array. If not, this method
/// will fail.
pub fn compound_terms_vec_sized(
&self,
compound: &Term,
count: usize,
) -> PrologResult<Vec<Term>> {
self.assert_activated();
let mut size = 0;
if unsafe {
PL_get_compound_name_arity(compound.term_ptr(), std::ptr::null_mut(), &mut size) != 1
} {
return Err(PrologError::Failure);
}
if (size as usize) != count {
return Err(PrologError::Failure);
}
let terms = self.new_term_refs_vec(count);
for (i, term) in terms.iter().enumerate() {
unsafe {
assert!(PL_get_arg((i + 1) as i32, compound.term_ptr(), term.term_ptr()) == 1);
}
}
Ok(terms)
}
#[cfg(feature = "serde")]
/// Deserialize a term into a rust value using serde.
pub fn deserialize_from_term<'de, DT: Deserialize<'de>>(
&'de self,
term: &'de Term<'de>,
) -> super::term::de::Result<DT> {
super::term::de::from_term(self, term)
}
#[cfg(feature = "serde")]
/// Serialize a value into a prolog term using serde.
///
/// This uses the default serialization configuration, meaning:
/// - prolog dictionary tags will remain variables.
/// - struct type names are ignored and will not be set as the dictionary tag.
pub fn serialize_to_term<ST: Serialize>(
&self,
term: &Term,
obj: &ST,
) -> Result<(), super::term::de::Error> {
super::term::ser::to_term(self, term, obj)
}
#[cfg(feature = "serde")]
/// Serialize a value into a prolog term using serde, providing configuration options.
pub fn serialize_to_term_with_config<ST: Serialize>(
&self,
term: &Term,
obj: &ST,
config: SerializerConfiguration,
) -> Result<(), super::term::de::Error> {
super::term::ser::to_term_with_config(self, term, obj, config)
}
/// Unify the term with the list functor, returning a term for the head and the tail.
pub fn unify_list_functor<'b>(
&'b self,
term: &Term,
) -> Result<(Term<'b>, Term<'b>), PrologError> {
let [head, tail] = self.new_term_refs();
match unsafe { PL_unify_list(term.term_ptr(), head.term_ptr(), tail.term_ptr()) } {
0 => {
unsafe {
head.reset();
}
if unsafe { pl_default_exception() != 0 } {
Err(PrologError::Exception)
} else {
Err(PrologError::Failure)
}
}
_ => Ok((head, tail)),
}
}
pub fn into_generic(&self) -> GenericQueryableContext {
self.assert_activated();
self.activated.set(false);
unsafe { Context::new_activated(self, GenericQueryableContextType, self.engine) }
}
}
/// An iterator over a term list.
///
/// See [`Context::term_list_iter`] for more information.
pub struct TermListIterator<'a, 'b, CT: QueryableContextType> {
context: &'a Context<'b, CT>,
cur: Term<'a>,
}
impl<'a, 'b, CT: QueryableContextType> Iterator for TermListIterator<'a, 'b, CT> {
type Item = Term<'a>;
fn next(&mut self) -> Option<Term<'a>> {
let head = self.context.new_term_ref();
let tail = self.context.new_term_ref();
let success =
unsafe { PL_get_list(self.cur.term_ptr(), head.term_ptr(), tail.term_ptr()) != 0 };
if success {
self.cur = tail;
Some(head)
} else {
None
}
}
}
/// Trait for turning errors into prolog exceptions
pub trait IntoPrologException {
/// Turns this error into a prolog exception using the given context.
///
/// The result is a `Term` containing the prolog exception.
fn into_prolog_exception<'a, T: QueryableContextType>(
self,
context: &'a Context<'_, T>,
) -> PrologResult<Term<'a>>;
}
impl IntoPrologException for std::io::Error {
fn into_prolog_exception<'a, T: QueryableContextType>(
self,
context: &'a Context<'_, T>,
) -> PrologResult<Term<'a>> {
let kind_str = format!("{:?}", self.kind());
let kind_atom = Atom::new(&kind_str);
let msg = format!("{}", self);
term! {context: error(rust_io_error(#kind_atom, #msg), _)}
}
}
/// Call the given function, converting panics into prolog exceptions.
///
/// If the inner function panics, an exception of the form
/// `error(rust_error(panic("..the panic message..")))` will be
/// raised, and this function will return
/// `Err(PrologError::Exception)`. Otherwise, This function will
/// return `Ok(())`.
///
/// This is used by various macros to ensure that panics from user
/// code do not propagate into prolog.
///
/// # Safety
/// This is only safe to use from an environment from which we can
/// raise a prolog exception.
pub unsafe fn prolog_catch_unwind<F: FnOnce() -> R + std::panic::UnwindSafe, R>(
f: F,
) -> PrologResult<R> {
let result = std::panic::catch_unwind(f);
match result {
Ok(result) => Ok(result),
Err(panic) => {
let context = unmanaged_engine_context();
let panic_term = context.new_term_ref();
let error_term = term! {context: error(rust_error(panic(#&panic_term)), _)}?;
match panic.downcast_ref::<&str>() {
Some(panic_msg) => {
panic_term.unify(panic_msg).unwrap();
}
None => match panic.downcast_ref::<String>() {
Some(panic_msg) => {
panic_term.unify(panic_msg.as_str()).unwrap();
}
None => {
panic_term.unify("unknown panic type").unwrap();
}
},
}
context.raise_exception::<()>(&error_term).unwrap_err();
Err(PrologError::Exception)
}
}
}
#[derive(Clone)]
pub struct GenericQueryableContextType;
unsafe impl ContextType for GenericQueryableContextType {}
impl FrameableContextType for GenericQueryableContextType {}
impl QueryableContextType for GenericQueryableContextType {}
#[cfg(test)]
mod tests {
use super::*;
use crate::functor::*;
use crate::predicate::*;
use crate::predicates;
#[test]
fn get_term_ref_on_fresh_engine() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let _term = context.new_term_ref();
}
#[test]
fn get_term_ref_on_frame() {
let engine = Engine::new();
let activation = engine.activate();
let context1: Context<_> = activation.into();
let _term1 = context1.new_term_ref();
let context2 = context1.open_frame();
let _term2 = context2.new_term_ref();
std::mem::drop(context2);
let _term3 = context1.new_term_ref();
}
#[test]
#[should_panic]
fn get_term_ref_from_inactive_context_panics() {
let engine = Engine::new();
let activation = engine.activate();
let context1: Context<_> = activation.into();
let _context2 = context1.open_frame();
let _term = context1.new_term_ref();
}
#[test]
fn query_det() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let functor_is = Functor::new("is", 2);
let functor_plus = Functor::new("+", 2);
let module = Module::new("user");
let predicate = Predicate::new(functor_is, module);
let callable = CallablePredicate::new(predicate).unwrap();
let term1 = context.new_term_ref();
let term2 = context.new_term_ref();
term2.unify(functor_plus)?;
term2.unify_arg(1, 40_u64)?;
term2.unify_arg(2, 2_u64)?;
let query = context.open(callable, [&term1, &term2]);
let next = query.next_solution()?;
assert!(!next);
assert_eq!(42_u64, term1.get()?);
let next = query.next_solution();
assert!(next.is_err());
Ok(())
}
#[test]
fn query_auto_discard() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let functor_is = Functor::new("is", 2);
let functor_plus = Functor::new("+", 2);
let module = Module::new("user");
let predicate = Predicate::new(functor_is, module);
let callable = CallablePredicate::new(predicate).unwrap();
let term1 = context.new_term_ref();
let term2 = context.new_term_ref();
assert!(term2.unify(functor_plus).is_ok());
assert!(term2.unify_arg(1, 40_u64).is_ok());
assert!(term2.unify_arg(2, 2_u64).is_ok());
{
let query = context.open(callable, [&term1, &term2]);
let next = query.next_solution()?;
assert!(!next);
assert_eq!(42_u64, term1.get().unwrap());
}
// after leaving the block, we have discarded
assert!(term1.get::<u64>().unwrap_err().is_failure());
Ok(())
}
#[test]
fn query_manual_discard() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let functor_is = Functor::new("is", 2);
let functor_plus = Functor::new("+", 2);
let module = Module::new("user");
let predicate = Predicate::new(functor_is, module);
let callable = CallablePredicate::new(predicate).unwrap();
let term1 = context.new_term_ref();
let term2 = context.new_term_ref();
term2.unify(functor_plus)?;
term2.unify_arg(1, 40_u64)?;
term2.unify_arg(2, 2_u64)?;
{
let query = context.open(callable, [&term1, &term2]);
let next = query.next_solution()?;
assert!(!next);
assert_eq!(42_u64, term1.get()?);
query.discard();
}
// after leaving the block, we have discarded
assert!(term1.get::<u64>().unwrap_err().is_failure());
Ok(())
}
#[test]
fn query_cut() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let functor_is = Functor::new("is", 2);
let functor_plus = Functor::new("+", 2);
let module = Module::new("user");
let predicate = Predicate::new(functor_is, module);
let callable = CallablePredicate::new(predicate).unwrap();
let term1 = context.new_term_ref();
let term2 = context.new_term_ref();
term2.unify(functor_plus)?;
term2.unify_arg(1, 40_u64)?;
term2.unify_arg(2, 2_u64)?;
{
let query = context.open(callable, [&term1, &term2]);
let next = query.next_solution()?;
assert!(!next);
assert_eq!(42_u64, term1.get()?);
query.cut();
}
// a cut query leaves data intact
assert_eq!(42_u64, term1.get()?);
Ok(())
}
#[test]
fn term_from_string_works() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = context.term_from_string("foo(bar(baz,quux))").unwrap();
let functor_foo = Functor::new("foo", 1);
let functor_bar = Functor::new("bar", 2);
assert_eq!(functor_foo, term.get().unwrap());
assert_eq!(functor_bar, term.get_arg(1).unwrap());
}
#[test]
fn open_call_nondet() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = context.term_from_string("member(X, [a,b,c])").unwrap();
let term_x = context.new_term_ref();
assert!(term.unify_arg(1, &term_x).is_ok());
let query = context.open_call(&term);
assert!(query.next_solution()?);
term_x.get_atom_name(|a| assert_eq!("a", a.unwrap()))?;
assert!(query.next_solution()?);
term_x.get_atom_name(|a| assert_eq!("b", a.unwrap()))?;
assert!(!query.next_solution()?);
term_x.get_atom_name(|a| assert_eq!("c", a.unwrap()))?;
assert!(query.next_solution().unwrap_err().is_failure());
Ok(())
}
#[test]
fn open_query_with_0_arg_predicate() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let functor = Functor::new("true", 0);
let module = Module::new("user");
let predicate = Predicate::new(functor, module);
let callable = CallablePredicate::new(predicate).unwrap();
let query = context.open(callable, []);
assert!(!query.next_solution()?);
Ok(())
}
#[test]
fn freeze_exception_is_delayed_until_next_query() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = context.term_from_string("freeze(X, throw(foo))")?;
let term_x = context.new_term_ref();
term.unify_arg(1, &term_x)?;
let query = context.open_call(&term);
assert!(!query.next_solution()?);
query.cut();
assert!(term_x.unify(42_u64).is_ok());
let term = context.new_term_ref();
term.unify(true)?;
let query = context.open_call(&term);
let next = query.next_solution();
assert!(next.unwrap_err().is_exception());
query.with_exception(|e| {
let exception_term = e.unwrap();
let atomable: Atomable = exception_term.get().unwrap();
assert_eq!("foo", atomable.name());
assert!(term.get::<u64>().unwrap_err().is_failure());
});
Ok(())
}
prolog! {
#[name("is")]
fn prolog_arithmetic(term, e);
}
#[test]
#[should_panic(expected = "tried to use context which has raised an exception")]
fn call_prolog_with_raised_exception_panics() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term1 = context.new_term_ref();
let term2 = context.new_term_ref();
let query = prolog_arithmetic(&context, &term1, &term2);
assert!(query.next_solution().unwrap_err().is_exception());
assert!(query.has_exception());
query.discard();
let _query2 = prolog_arithmetic(&context, &term1, &term2);
}
predicates! {
semidet fn unify_with_42(_context, term) {
term.unify(42_u64)
}
}
#[test]
fn register_foreign_predicate() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
assert!(register_unify_with_42());
let context: Context<_> = activation.into();
let term = context.new_term_ref();
let functor = Functor::new("unify_with_42", 1);
let module = Module::new("user");
let predicate = Predicate::new(functor, module);
let callable = CallablePredicate::new(predicate).unwrap();
let query = context.open(callable, [&term]);
assert!(!query.next_solution()?);
assert_eq!(42, term.get::<u64>().unwrap());
Ok(())
}
#[test]
fn call_prolog_from_generated_rust_query_opener() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = context.new_term_ref();
let expr = context.term_from_string("2+2").unwrap();
let q = prolog_arithmetic(&context, &term, &expr);
assert!(q.next_solution().is_ok());
assert_eq!(4, term.get::<u64>().unwrap());
}
#[test]
fn iterate_over_term_list() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[5, foo, \"bar\"]").unwrap();
let mut iter = context.term_list_iter(&list);
let first = iter.next().unwrap();
let second = iter.next().unwrap();
let third = iter.next().unwrap();
assert!(iter.next().is_none());
assert_eq!(5, first.get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), second.get::<Atom>().unwrap());
assert_eq!("bar", third.get::<String>().unwrap());
}
#[test]
fn iterate_over_term_that_is_not_a_list() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("foo(bar, baz)").unwrap();
let mut iter = context.term_list_iter(&list);
assert!(iter.next().is_none());
}
#[test]
fn loop_over_term_list() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[42, 42, 42, 42, 42]").unwrap();
let mut count = 0;
for term in context.term_list_iter(&list) {
count += 1;
assert_eq!(42, term.get::<u64>().unwrap());
}
assert_eq!(5, count);
}
#[test]
fn term_list_to_array() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[5, foo, \"bar\"]").unwrap();
let terms: [Term; 3] = context.term_list_array(&list);
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
}
#[test]
fn term_list_to_array_large() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[5, foo, \"bar\"]").unwrap();
let terms: [Term; 4] = context.term_list_array(&list);
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
assert!(terms[3].is_var());
}
#[test]
fn term_list_to_array_small() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[5, foo, \"bar\"]").unwrap();
let terms: [Term; 2] = context.term_list_array(&list);
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
}
#[test]
fn term_list_to_vec() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let list = context.term_from_string("[5, foo, \"bar\"]").unwrap();
let terms = context.term_list_vec(&list);
assert_eq!(3, terms.len());
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
}
#[test]
fn term_compound_to_array() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("moo(5, foo, \"bar\")").unwrap();
let terms: [Term; 3] = context.compound_terms(&compound).unwrap();
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
}
#[test]
fn term_compound_to_wrong_size_array() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("moo(5, foo, \"bar\")").unwrap();
let terms: Option<[Term; 4]> = attempt_opt(context.compound_terms(&compound)).unwrap();
assert!(terms.is_none());
}
#[test]
fn term_compound_to_vec() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("moo(5, foo, \"bar\")").unwrap();
let terms = context.compound_terms_vec(&compound).unwrap();
assert_eq!(3, terms.len());
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
}
#[test]
fn term_compound_to_sized_vec() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("moo(5, foo, \"bar\")").unwrap();
let terms = context.compound_terms_vec_sized(&compound, 3).unwrap();
assert_eq!(3, terms.len());
assert_eq!(5, terms[0].get::<u64>().unwrap());
assert_eq!(Atom::new("foo"), terms[1].get::<Atom>().unwrap());
assert_eq!("bar", terms[2].get::<String>().unwrap());
}
#[test]
fn term_compound_to_wrong_size_vec() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("moo(5, foo, \"bar\")").unwrap();
let terms = attempt_opt(context.compound_terms_vec_sized(&compound, 4)).unwrap();
assert!(terms.is_none());
}
#[test]
fn term_compound_not_a_compound() {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let compound = context.term_from_string("\"moo\"").unwrap();
let terms: Option<[Term; 4]> = attempt_opt(context.compound_terms(&compound)).unwrap();
assert!(terms.is_none());
}
}