1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
//! Support for calling into prolog or prolog-like code.
use crate::context::*;
use crate::engine::*;
use crate::fli::*;
use crate::functor::*;
use crate::module::*;
use crate::predicate::*;
use crate::result::*;
use crate::term::*;
use std::convert::TryInto;
use std::os::raw::c_void;
use std::sync::atomic::{AtomicPtr, Ordering};
use thiserror::Error;
/// Looks up a predicate on first call to `as_callable` and keeps it cached afterwards.
///
/// This is used by both the `prolog!` macro and the `pred!` macro to
/// only look up a predicate once.
pub struct LazyCallablePredicate<const N: usize> {
module: Option<&'static str>,
name: &'static str,
predicate: AtomicPtr<c_void>,
}
impl<const N: usize> LazyCallablePredicate<N> {
/// Create a new `LazyCallablepredicate` from a module, a name, and the const type argument which is used as arity.
pub const fn new(module: Option<&'static str>, name: &'static str) -> Self {
Self {
module,
name,
predicate: AtomicPtr::new(std::ptr::null_mut()),
}
}
/// Return a `CallablePredicate` from the information in this struct.
///
/// If this was previously called for this struct, it'll return
/// what it previously looked up. Otherwise, it'll do the lookup.
pub fn as_callable(&self) -> CallablePredicate<N> {
assert_some_engine_is_active();
let mut loaded: predicate_t = self.predicate.load(Ordering::Relaxed) as predicate_t;
if loaded.is_null() {
let functor = Functor::new(self.name, N as u16);
let module_name = self.module.unwrap_or("");
let module = Module::new(module_name);
loaded = Predicate::new(functor, module).predicate_ptr();
self.predicate
.store(loaded as *mut c_void, std::sync::atomic::Ordering::Relaxed);
}
unsafe { CallablePredicate::wrap(loaded) }
}
}
impl<const N: usize> Callable<N> for LazyCallablePredicate<N> {
type ContextType = OpenQuery;
fn open<'a, C: ContextType>(
self,
context: &'a Context<C>,
module: Option<Module>,
args: [&Term; N],
) -> Context<'a, OpenQuery> {
self.as_callable().open(context, module, args)
}
}
impl<'a, const N: usize> Callable<N> for &'a LazyCallablePredicate<N> {
type ContextType = OpenQuery;
fn open<'b, C: ContextType>(
self,
context: &'b Context<C>,
module: Option<Module>,
args: [&Term; N],
) -> Context<'b, OpenQuery> {
self.as_callable().open(context, module, args)
}
}
/// Error type for turning a [Predicate](crate::predicate::Predicate) into a [CallablePredicate].
#[derive(Error, Debug)]
pub enum PredicateWrapError {
#[error("predicate has arity {actual} but {expected} was required")]
WrongArity { expected: u16, actual: u16 },
}
/// A prolog predicate which is ready to be called.
#[derive(Clone, Copy)]
pub struct CallablePredicate<const N: usize> {
predicate: predicate_t,
}
impl<const N: usize> CallablePredicate<N> {
/// Wrap a `predicate_t` from the SWI-Prolog fli, not checking if arity matches.
///
/// # Safety
/// This is only safe if the given predicate is in fact a
/// predicate in SWI-Prolog.
pub unsafe fn wrap(predicate: predicate_t) -> Self {
// no check for arity or if the predicate even exists!
Self { predicate }
}
/// Wrap a [Predicate](crate::predicate::Predicate).
///
///This checks that the arity matches the const generic, and
/// panics otherwise.
pub fn new(predicate: Predicate) -> Result<Self, PredicateWrapError> {
assert_some_engine_is_active();
let arity = predicate.arity();
if arity as usize != N {
Err(PredicateWrapError::WrongArity {
expected: N as u16,
actual: arity,
})
} else {
Ok(unsafe { Self::wrap(predicate.predicate_ptr()) })
}
}
}
/// Trait for things that can be called as if they are prolog predicates.
///
/// This is obviously the case for prolog predicates themselves, which
/// are implemented through [CallablePredicate]. The intention though
/// is to also implement frontends for foreign predicates through this
/// trait, so that they may be used as prolog predicates without
/// actually having to go through prolog. However, this is currently
/// not yet implemented.
///
/// Through the const generic, this knows about the predicate arity at
/// compile time. This allows `context.open(..)` to check at compile
/// time that the arity matches.
pub trait Callable<const N: usize> {
type ContextType: OpenCall;
fn open<'a, C: ContextType>(
self,
context: &'a Context<C>,
module: Option<Module>,
args: [&Term; N],
) -> Context<'a, Self::ContextType>;
}
/// An open query.
pub struct OpenQuery {
qid: qid_t,
closed: bool,
}
/// An open call.
///
/// A context that wraps an open call can be asked for the next
/// solution, or close itself through cutting the query or
/// discarding. All these functions are actually implemented here
/// using the `OpenCall` trait.
///
/// This context type is the only type where new terms are not allowed
/// to be created, nor is it allowed to start new queries directly
/// from this context. This is because SWI-Prolog really doesn't like
/// it if the prolog stack changes between solutions. It is still
/// possible however to open a new frame and do all that stuff in the
/// new frame. You'll need to close the frame before continuing with
/// solution retrieval.
///
/// # Safety
/// A type implementing OpenCall automatically becomes a ContextType
/// as well, so all the safety concerns regarding ContextType apply
/// here too.
pub unsafe trait OpenCall: Sized {
/// Retrieve the next solution.
///
/// If solution retrieval led to a failure or an error, this is
/// returned in the `Err` part of the `PrologResult`. Otherwise,
/// `Ok(true)` is returned if there are more solutions, and
/// `Ok(false)` is returned when this is the last solution.
fn next_solution(this: &Context<Self>) -> PrologResult<bool>;
/// Cut the query, keeping all data it has created.
///
/// Any unifications the query did to terms from parent contexts
/// will be retained.
fn cut(this: Context<Self>);
/// Discard the query, discarding all data it has created.
///
/// Any unifications the query did to terms from parent contexts
/// will be discarded.
fn discard(this: Context<Self>);
}
impl<'a, C: OpenCall> Context<'a, C> {
/// Retrieve the next solution.
///
/// If solution retrieval led to a failure or an error, this is
/// returned in the `Err` part of the `PrologResult`. Otherwise,
/// `Ok(true)` is returned if there are more solutions, and
/// `Ok(false)` is returned when this is the last solution.
pub fn next_solution(&self) -> PrologResult<bool> {
C::next_solution(self)
}
/// Cut the query, keeping all data it has created.
///
/// Any unifications the query did to terms from parent contexts
/// will be retained.
pub fn cut(self) {
C::cut(self)
}
/// Discard the query, discarding all data it has created.
///
/// Any unifications the query did to terms from parent contexts
/// will be discarded.
pub fn discard(self) {
C::discard(self)
}
/// Retrieve one result, and then cut.
pub fn once(self) -> PrologResult<()> {
self.next_solution()?;
self.cut();
Ok(())
}
/// Retrieve one result, ignoring failures, and then cut.
///
/// Exceptions will still be returned as such.
pub fn ignore(self) -> PrologResult<()> {
if let Err(PrologError::Exception) = self.next_solution() {
Err(PrologError::Exception)
} else {
self.cut();
Ok(())
}
}
}
unsafe impl<T: OpenCall> ContextType for T {}
impl<T: OpenCall> FrameableContextType for T {}
unsafe impl OpenCall for OpenQuery {
fn next_solution(this: &Context<Self>) -> PrologResult<bool> {
this.assert_activated();
let result = unsafe { PL_next_solution(this.context.qid) };
match result {
-1 => {
let exception = unsafe { PL_exception(this.context.qid) };
// rethrow this exception but as the special 0 exception which remains alive
unsafe { PL_raise_exception(exception) };
Err(PrologError::Exception)
}
0 => Err(PrologError::Failure),
1 => Ok(true),
2 => Ok(false),
_ => panic!("unknown query result type {}", result),
}
}
fn cut(mut this: Context<Self>) {
this.assert_activated();
// TODO handle exceptions
unsafe { PL_cut_query(this.context.qid) };
this.context.closed = true;
}
fn discard(mut this: Context<Self>) {
this.assert_activated();
// TODO handle exceptions
unsafe { PL_close_query(this.context.qid) };
this.context.closed = true;
}
}
impl Drop for OpenQuery {
fn drop(&mut self) {
if !self.closed {
unsafe { PL_close_query(self.qid) };
}
}
}
impl<const N: usize> Callable<N> for CallablePredicate<N> {
type ContextType = OpenQuery;
fn open<'a, C: ContextType>(
self,
context: &'a Context<C>,
module: Option<Module>,
args: [&Term; N],
) -> Context<'a, Self::ContextType> {
context.assert_activated();
context.assert_no_exception();
let module_context = module
.map(|c| c.module_ptr())
.unwrap_or(std::ptr::null_mut());
let flags = PL_Q_NORMAL | PL_Q_CATCH_EXCEPTION | PL_Q_EXT_STATUS;
unsafe {
#[allow(clippy::useless_conversion)]
let terms = PL_new_term_refs(N.try_into().unwrap());
for (i, arg) in args.iter().enumerate() {
let term = context.wrap_term_ref(terms + i);
assert!(term.unify(arg).is_ok());
}
let qid = PL_open_query(
module_context,
flags.try_into().unwrap(),
self.predicate,
terms,
);
let query = OpenQuery { qid, closed: false };
context.deactivate();
Context::new_activated(context, query, context.engine_ptr())
}
}
}
#[cfg(test)]
mod tests {
use crate::prelude::*;
#[test]
fn call_prolog_inline_slash() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = term! {context: flurps(flargh)}?;
context.call_once(pred!(writeq / 1), [&term]).unwrap();
context.call_once(pred!(nl / 0), []).unwrap();
Ok(())
}
#[test]
fn call_prolog_inline_module_slash() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = term! {context: flurps(flargh)}?;
context.call_once(pred!(user: writeq / 1), [&term]).unwrap();
context.call_once(pred!(user: nl / 0), []).unwrap();
Ok(())
}
#[test]
fn call_prolog_inline_str() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = term! {context: flurps(flargh)}?;
context.call_once(pred!("writeq/1"), [&term]).unwrap();
context.call_once(pred!("nl/0"), []).unwrap();
Ok(())
}
#[test]
fn call_prolog_inline_module_str() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = term! {context: flurps(flargh)}?;
context.call_once(pred!(user:"writeq/1"), [&term]).unwrap();
context.call_once(pred!(user:"nl/0"), []).unwrap();
Ok(())
}
#[test]
fn call_prolog_inline_str_with_module() -> PrologResult<()> {
let engine = Engine::new();
let activation = engine.activate();
let context: Context<_> = activation.into();
let term = term! {context: flurps(flargh)}?;
context.call_once(pred!("user:writeq/1"), [&term]).unwrap();
context.call_once(pred!("user:nl/0"), []).unwrap();
Ok(())
}
}